skip to main content


Search for: All records

Creators/Authors contains: "Liu, Tong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. This paper presents a unified approach to the problem of learning-based optimal control of connected human-driven and autonomous vehicles in mixed-traffic environments including both the freeway and ring road settings. The stabilizability of a string of connected vehicles including multiple autonomous vehicles (AVs) and heterogeneous human-driven vehicles (HDVs) is studied by a model reduction technique and the Popov-Belevitch-Hautus (PBH) test. For this problem setup, a linear quadratic regulator (LQR) problem is formulated and a solution based on adaptive dynamic programming (ADP) techniques is proposed without a priori knowledge on model parameters. To start the learning process, an initial stabilizing control law is obtained using the small-gain theorem for the ring road case. It is shown that the obtained stabilizing control law can achieve general Lp string stability under appropriate conditions. Besides, to minimize the impact of external disturbance, a linear quadratic zero-sum game is introduced and solved by an iterative learning-based algorithm. Finally, the simulation results verify the theoretical analysis and the proposed methods achieve desirable performance for control of a mixed-vehicular network. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. This paper studies the issue of data-driven optimal control design for traffic signals of oversaturated urban road networks. The signal control system based on the store and forward model is generally uncontrollable for which the controllable decomposition is needed. Instead of identifying the unknown parameters like saturation rates and turning ratios, a finite number of measured trajectories can be used to parametrize the system and help directly construct a transformation matrix for Kalman controllable decomposition through the fundamental lemma of J. C. Willems. On top of that, an infinite-horizon linear quadratic regulator (LQR) problem is formulated considering the constraints of green times for traffic signals. The problem can be solved through a two-phase data-driven learning process, where one solves an infinite-horizon unconstrained LQR problem and the other solves a finite-horizon constrained LQR problem. The simulation result shows the theoretical analysis is effective and the proposed data-driven controller can yield desired performance for reducing traffic congestion. 
    more » « less
  7. This article proposes a deep learning (DL)-based control algorithm—DL velocity-based model predictive control (VMPC)—for reducing traffic congestion with slowly time-varying traffic signal controls. This control algorithm consists of system identification using DL and traffic signal control using VMPC. For the training process of DL, we established a modeling error entropy loss as the criteria inspired by the theory of stochastic distribution control (SDC) originated by the fourth author. Simulation results show that the proposed algorithm can reduce traffic congestion with a slowly varying traffic signal control input. Results of an ablation study demonstrate that this algorithm compares favorably to other model-based controllers in terms of prediction error, signal varying speed, and control effectiveness. 
    more » « less